ГИА СИУ

 

Понятие об архитектуре и структуре ЭВМ

 

Архитектурой компьютера считается его представление на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т. д.

Архитектура компьютера, характеризующая его логическую организацию, может быть представлена как множество взаимосвязанных компонент, включающих элементы различной природы: программное обеспечение (software), аппаратное обеспечение (hardware), алгоритмическое обеспечение (brainware), специальное фирменное обеспечение (firmware) – и поддерживающих его слаженное функционирование в форме единого архитектурного ансамбля, позволяющего вести эффективную обработку различных объектов и данных.

Архитектура вычислительной системы определяет основные функциональные возможности системы, сферу применения (научно-техническая, экономическая, управление, и т.д.), режим работы (пакетный, мультипрограммный, диалоговый и т.д.), характеризует параметры ВС (быстродействие, набор и объем памяти, набор периферийных устройств и т.д.), особенности структуры (одно-, многопроцессорная) и т.д.

Понятие «архитектура» можно представить следующей схемой:

Архитектура ВС

 

Вычислительные
и логические
возможности

 

Программное
обеспечение

 

Системы команд

 

Операционные
системы

 

Форматы данных

 

Алгоритмы выполнения операций

 

Системы программирования

 

Прикладное ПО

 

Аппаратные
средства

 

Базовая структура системы

 

Организация памяти

 

Принципы управления

 

Организация взаимодействия с внешними устройствами

 

Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного запоминающего устройства (ОЗУ, ОП), внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Структура компьютера – это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства – от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

 

Основные блоки ЭВМ.

Идея создания вычислительной машины, работающей без вмешательства человека, принадлежит Ч. Бэббиджу. Его аналитическая машина должна была содержать:

u Устройство, в котором производятся все операции по обработке всех видов информации; по современной терминологии оно называется арифметико-логическим устройством (АЛУ).

u Устройство, обеспечивающее организацию выполнения программы обработки информации и согласованное взаимодействие всех узлов машины в ходе этого процесса – устройство управления (УУ); АЛУ и УУ являются составными частями микропроцессора.

u Устройство, предназначенное для хранения исходных данных, промежуточных величин и результатов обработки информации, а также самой программы обработки информации; это устройство называют запоминающим устройством (ЗУ) или памятью. Существуют различные виды памяти, в том числе оперативное запоминающее устройство (ОЗУ), постоянное запоминающее устройство (ПЗУ) и внешняя память на магнитных или оптических дисках.

u Разнообразные устройства, способные преобразовывать информацию в форму, доступную компьютеру – устройства ввода.

u Устройства, преобразующие результаты компьютерной обработки информации в доступную человеку форму – устройства вывода.

Указанные блоки входят в состав и современных компьютеров.

 

 

 

Классическая структура ЭВМ. Принципы фон Неймана.

Классические принципы построения ЭВМ были изложены в 1945 г. группой американских ученых, среди которых был очень известный математик и физик Джон фон Нейман. Впоследствии всем базовым принципам построения вычислительной техники стали приписывать его авторство, а архитектура с последовательным выполнением команд получила название «фон-неймановской».

Кратко сформулируем классические принципы устройства ЭВМ.

Использование двоичной системы счисления для представления чисел. В докладе Неймана были продемонстрированы преимущества двоичной системы для технической реализации узлов компьютера, удобство и простота выполнения в ней арифметических и логических операций. В дальнейшем ЭВМ стали обрабатывать текстовую, графическую, звуковую и другие виды информации, но по-прежнему двоичное кодирование данных составляет информационную основу любого современного компьютера.

Принцип программного управления. Программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды. Так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд. Если после выполнения команды следует перейти не к следующей, а к какой-то другой команде, используются команды условного или безусловного переходов, которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды «стоп».

Принцип однородности памяти. Программа также должна храниться в виде набора нулей и единиц, причем в той же самой памяти, что и обрабатываемые ей числа. С точки зрения хранения и способов обработки принципиальная разница между программой и данными отсутствует.

Принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Адресом ячейки фактически является её номер; таким образом, местонахождение информации в ОЗУ также кодируется в виде чисел.

Фон Нейман с соавторами предложил структуру ЭВМ, которая полностью воспроизводилась в машинах первого и второго поколений.

 

 

устройства ввода

 

процессор

(АЛУ, УУ)

 

память

(ОЗУ, ПЗУ)

 

устройства вывода

 

внешняя

память

 

 

 

 

 

 

 

 

 

 

 


Рис. 2.1 Структура ЭВМ первого и второго поколений

Тонкими стрелками показаны направления движения информации, а толстыми – управляющие воздействия УУ центрального процессора.

Центральное положение процессора в схеме (рис. 2.1) является наиболее существенной особенностью устройства машин «фон-неймановской» архитектуры.

 

Структура современных ЭВМ.

Появление третьего поколения ЭВМ было обусловлено переходом от транзисторов к микросхемам. Резко увеличилось быстродействие процессора. Возникло существенное противоречие между высокой скоростью обработки информации внутри машины и медленной работой устройств ввода/вывода. Если бы процессор руководил работой внешних устройств по классической схеме, то значительную часть он был бы вынужден простаивать в ожидании информации, что существенно снижало бы эффективность работы всей ЭВМ в целом. Для решения этой проблемы возникла тенденция к освобождению центрального процессора от функций обмена информацией и передаче этих функций специализированным электронным схемам. Эти схемы назывались процессорами ввода-вывода или периферийными процессорами. В настоящее время используется термин контроллер внешнего устройства.

Контроллер можно рассматривать как специализированный процессор, управляющий работой вверенного ему внешнего устройства по специальным встроенным программам обмена. Такой процессор имеет собственную систему команд. Например, контроллер накопителя на гибких магнитных дисках умеет позиционировать головку на нужную дорожку диска, читать или записывать сектор, форматировать дорожку и т.д. Сведения об успешности выполнения такой операции заносятся во внутренние регистры контроллера и могут быть прочитаны центральным процессором.

В компьютерах четвертого поколения (рис. 2.2.) для связи между отдельными функциональными узлами ЭВМ стали использовать принципиально новое устройство – системную шину (общую шину, магистраль).

Системная шина состоит из трех частей:

1.      шина данных, по которой передается информация;

2.      шина адреса, определяющая, куда передаются данные;

3.      шина управления, регулирующая процесс обмена информацией.

Физически магистраль представляет собой многопроводную линию с гнездами для подключения электронных схем.

Для согласования с шиной многочисленных внешних устройств используются контроллеры (К).

Компьютеры, имеющие описанную структуру, легко пополнять новыми устройствами – это свойство называют открытостью архитектуры.

Для пользователя открытая архитектура означает возможность выбирать состав внешних устройств для своего компьютера, т.е. конфигурировать его в зависимости от круга решаемых задач.

шина адреса

 

шина данных

 

шина управления

 

процессор

(АЛУ), (УУ),

(РОН), (КЭШ)

 

память

(ОЗУ, ПЗУ)

 

 

видеоОЗУ

 

внешняя

память

 

устройства

вывода

 

устройства

ввода

 

К

 

К

 

К

 

системная

шина

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Рис. 2.2 Структура ЭВМ четвертого поколения

Центральный процессор выполняет логические и арифметические операции, определяет порядок выполнения операций, указывает источники данных и приемники результатов. Работа процессора происходит под управлением программы.

На приведенной на рис. 2.2 схеме в составе процессора выделены четыре устройства: арифметико-логическое устройство (АЛУ), устройство управления (УУ), регистры общего назначения (РОН) и кэш-память.

АЛУ выполняет арифметические и логические операции над данными.

Промежуточные результаты сохраняются в РОН. Регистровая память наиболее быстрая из всех видов памяти. Она представляет собой несколько регистров общего назначения, которые размещены внутри процессора. Регистры используются при выполнении процессором простейших операций.

Кэш-память служит для повышения быстродействия процессора, путем уменьшения времени его непроизводительного простоя. Кэш-память по сравнению с регистровой памятью имеет больший объем, но меньшее быстродействие, используется для хранения полученных данных, которые будут использоваться процессором в ближайшее время. Введение кэш-памяти позволяет сэкономить время, которое без нее тратилось на пересылку данных и команд из процессора в оперативную память и обратно.

УУ отвечает за формирование адресов очередных команд, т.е. за порядок выполнения команд, из которых состоит программа.

Программа – это набор команд, под действием которых работает ЭВМ. Команда обеспечивает выработку в УУ управляющих сигналов, под действием которых процессор выполняет элементарные операции. Таким образом, программы состоят из команд, а при выполнении команд процессор разбивает команды на элементарные операции. Элементарными операциями для процессора являются арифметические и логические действия, перемещение данных между регистрами процессора, счет и т.д. Каждая команда выполняется в компьютере за один или несколько тактов.

Такт работы процессора – промежуток времени между соседними импульсами генератора тактовых импульсов, частота которых есть тактовая частота процессора. Эта частота является одной из основных характеристик компьютера и во многом определяет скорость его работы, поскольку каждая операция в ЭВМ выполняется за определенное число тактов. Выполнение короткой команды (арифметика с фиксированной точкой, логические операции) обычно занимает пять тактов:

1.      выборка команды;

2.      расшифровка кода операции (декодирование);

3.      генерация адреса и выборка данных из памяти;

4.      выполнение операции;

5.      запись результата в память.

Оперативное запоминающее устройство (ОЗУ) используется для кратковременного хранения переменной информации и допускает изменение своего содержимого в ходе выполнения процессором вычислительных операций. ОЗУ используется для хранения программ, а также конечных и промежуточных данных, получающихся при работе процессора. ОЗУ – это энергозависимая память, при выключении питания информация, хранившаяся в ОЗУ, теряется безвозвратно.

В постоянном запоминающем устройстве (ПЗУ) хранится информация, которая не изменяется при работе ЭВМ. Такую информацию составляют тестово-мониторные программы (они проверяют работоспособность компьютера в момент его включения), драйверы (программы, управляющие работой отдельных устройств ЭВМ) и др. ПЗУ является энергонезависимым устройством, поэтому информация в нем сохраняется и при выключении электропитания.

ВидеоОЗУ – оперативное запоминающее устройство, предназначенное для хранения информации, отображаемой на мониторе. Содержимое видеопамяти формируется компьютером, а затем контроллер дисплея выводит изображение на экран. Объем видеопамяти зависит от характера информации (текст или графика) и от количества цветов изображения.

Внешние запоминающие устройства (ВЗУ, внешняя память) предназначены для долговременного хранения информации. К ВЗУ относятся накопители на магнитной ленте (магнитофоны, стримеры), накопители на жестких дисках (НЖД, винчестеры), накопители на гибких дисках (НГМД), накопители на оптических дисках (CD, DVD), накопители с использованием перепрограммируемых запоминающих устройств (FLASH-память).

К устройствам ввода информации относятся: клавиатура, ручные манипуляторы мышь, трекбол, джойстик, трекпойнт, трекпад, сканер, сенсорные экраны, световое перо, информационные перчатки, шлем, джойстринг, диджитайзер, цифровая видеокамера, микрофон и др.

К устройствам вывода информации относятся: дисплей (монитор), принтер, плоттер, акустическая система (колонки) и др.

В составе современного компьютера с магистральной структурой имеется не одна, а несколько шин. Например, одна шина может использоваться для обмена с памятью, вторая – для связи с «быстрыми», а третья – с «медленными» внешними устройствами.

Существуют и другие структуры, в частности многопроцессорные, позволяющие вести параллельную обработку данных с помощью нескольких процессоров.

Сайт создан по технологии «Конструктор e-Publish»
Hosted by uCoz